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Rules of sudoku are clear, | hope.....

Every row, column and small square
must contain the numbers 1-9
precisely once
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Rules of sudoku are clear, | hope.....

The solution of a puzzle should be
provably unique; multiple solutions are 4
not allowed

Hans Zantema of our CS department
knows a lot about constructing sudoku
puzzles and reducing the number of 8
solutions from many to 1 by changing
the numbers and structure

N = W N
N

Hans Zantema, “De achterkant van
Sudoku”
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Simple logical steps

* Many sudokus can be started off by 2 5 1]4 8
logical steps only, and the simpler 9 5
categories can be solved entirely using 4 312 7 9 5
such steps
3 7 8|5 1
« Consider this example: 5 1 3 9 4 6
6 1 5 3
8 4 5|6 112 9 7
7 6|9 5 2
1 2 9|8 4 7|3 5 6
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Simple logical steps 1
* Many sudokus can be started off by 2 5 114 8
logical steps only, and the simpler 9 5
categories can be solved entirely using 4 3|2 7 9 5
such steps
3 7 8|5 1
« Consider this example: 5 1 3 9 4 6
 In the 5th column, 1,2,6 are missing 6 1 5 3
8 4 5|6 112 9 7
7 6|9 5 2
1 2 9|8 4 7|3 5 6
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Simple logical steps 1
* Many sudokus can be started off by 2 5 114 s
logical steps only, and the simpler 9 5
categories can be solved entirely using 4 312 7 o9 5
such steps 3 - X gl|ls5 1
« Consider this example: 5 1 3 9 4 6
* In the 5™ column, 1,2,6 are missing 6 @ X 5 3
« 1 cannot go into (R4,C5) and (R6,C5), 8 4 516 3 112 9 7
because there is already 1 in (R6,C4) 2 3 6lo9 5 2
1 2 9|18 4 7|3 5 6
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Simple logical steps 1
« Many sudokus can be started off by 2 5 114 38
logical steps only, and the simpler 9 5 1
categories can be solved entirely using
4 312 7 9 5
such steps
: . 3 7 8|15 1
« Consider this example:
5 1 3 9 4 6
* In the 5 column, 1,2,6 are missing 6 . 5 3
- 1 cannotf go info (R4,C5) and (Ré,C5),
because there is already 1 in (R6,C4) 8 4 516 112 9 7
« Hence, 1 must go into (R2,C5) 7 3 619 5 2
1 2 918 4 7 3 5 6
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Simple logical steps 1

* Many sudokus can be started off by logical
steps only, and the simpler categories can
be solved entirely using such steps
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« Consider this example:

* In the 5™ column, 1,2,6 are missing

« 1 cannot go into (R4,C5) and (R6,C5),
because there is already 1 in (R6,C4)

« Hence, 1 must go info (R2,C5)

* But then 6 must be in (R4,C5) and 2in
the remaining cell (R6,C5)
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Simple logical steps 1

* Many sudokus can be started off by logical
steps only, and the simpler categories can
be solved entirely using such steps
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« Consider this example:
* In the 5™ column, 1,2,6 are missing

« 1 cannot go into (R4,C5) and (R6,C5),
because there is already 1 in (R6,C4)

* Hence, 1 must go into (R2,CJ5)

* But then 6 must be in (R4,C5) and 2in
the remaining cell (R6,C5)

* In this way, the sudoku can be
completed with logical steps only
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A mechanisfic procedure

[&%] Simple Sudoku - moderate1.ss
Eile Edit View Options Help

Hed 20 9e @ 0800
L1 [1] (21 (31 [4] (5] (6] (7] 8] [9] [*«]

123 1 3
4 6 4 6
83 89 2

wF |1 L A * Many books advocate writing down all
ool oo 8T )L = remaining possibilities for each cell, like in
e il TR the example on the left

1 3 1 3
5 5 2

* Itis a lot of work, and often no strategies are
provided on how to proceed with this
information

23 cells completed, 58 cells to go
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Numlber pairs

» | advocate using only number
pairs, like displayed in the puzzle
on the right (grey cells were filled in
with logical steps)

« Often, when progressing, you find
number pairs that “correspond”
- “46"in (R6,C2) & (R6,C3)

o “59" 89" and “58" in row 6
indicate that 5,8,9 are in these
cells

« But then 15" in (R4,C4) should be
reduced to a single digit “1"
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X-wing
9 8 4 | 7]6 5
* The puzzle | sent around for you o solve 25 48
: 6 711 9 3
contains a well-known pattern termed e 45 25
the X-wing 1 3 6 | 9 7
28 28
- After progressing with logical steps, one 9 = 4 7 5 481
ends up with the situation on the right, 1 6 3 2 5
45 24
and one seems to be stuck 3 9 8 11|17 s
48 48
7 2 6 3|15 9
45 57 47
2 6 9 8] 3 1
58 57 78
3 9 1 | 4] 2 6
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X-wing
9 8 4 716 5
« Look at the 3@ and 9™ row: 1 25 o 48 ,
« The number 8 can only go in two positions: 48 45 25
15" and 8™ column 1 3 6 | 9 7
28 28
9 4 7 51| 1
48 48
1 6 3 2 5
45 24
3 9 8 1|7 6
48 48
7 2 6 3|15 9
45 57 47
2 6 9 8| 3 1
58 57 78
3 9 1 4] 2 6
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X-wing

- Look at the 3@ and 2 row:

« The number 8 can only go in two positions:
15t and 8™ column

« 8in (R3,C1) implies 5in (R?,C1) and hence 8
in (R8,C8)
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X-wing

- Look at the 3@ and 2 row:

« The number 8 can only go in two positions:
15t and 8™ column

« 8in (R3,C1) implies 5in (R?,C1) and hence 8
in (R8,C8)

« 8in (R3,C8) implies 7 in (R?,C8) and hence 8
in (R9,C1)
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X-wing

- Look at the 3@ and 2 row:

« The number 8 can only go in two positions:
15t and 8™ column

« 8in (R3,C1) implies 5in (R?,C1) and hence 8
in (R8,C8)

« 8in (R3,C8) implies 7 in (R?,C8) and hence 8
in (R9,C1)

« Conclusion:

« the 8's are positioned in a cross-like fashion

* In columns 1 and 8 there is always an 8 in
one of the two grey cells
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- Look at the 3@ and 9 row:

* The number 8 can only go in two positions: 486 45
1t and 8™ column 1

8in (R3,C1) implies 5in (R9,C1) and hence 8 6 28
in (R8,C8)

« 8in (R3,C8) implies 7 in (R?,C8) and hence 8
in (R9,C1)

« Conclusion:

25
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45 24
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« the 8's are positioned in a cross-like fashion 45 57

« In columns 1 and 8 there is always an 8 in 2 6
one of the two grey cells 28 57

« The latter means that “8" in (R4,C8) can be
omitted as option; hence, there must be a 2
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Many more patterns

« People have identified many different
patterns that can lead to new
numbers to be found in sudokus

« On the right we see the “swordfish”,
which is an extension of the X-wing
with 3 rows and 3 columns

29

289

28

1 6 5 4 3 7
7 8 6 1 4 3 5
4 3 5|38 7|6 O 1
13 13
7 2 4 5 8 6 9
48 34 38
6 9 1 2 5 | 7
589 589 19 128 28
3 7 6 4
2589 27 59 2789 28
1 6 3 4
459 249 27 59 279
3 8 1 6
89
7 1 6 4 5 @ 3
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Many more patterns

« People have identified many different
patterns that can lead to new
numbers to be found in sudokus

« On the right we see the “swordfish”,
which is an extension of the X-wing
with 3 rows and 3 columns

* |In this case, it leads to the elimination
of the 2in (R6,C8), hence 8 remains

« Other patterns: Y-wing, W-wing,
jellyfish, aligned pair exclusion, Exocet,
Sue-de-coq, ......

29

289

28

1 6 5 4 3 7
7 8 6 1 4 3 5
4 3 5|38 7|6 O 1
13 13
7 2 4 5 8 6 9
48 34 38
6 9 1 2 5 | 7
589 589 19 128 28
3 7 6 8 4
2589 27 59 2789 28
1 6 3 4
459 249 27 59 279
3 8 1 6
89
7 1 6 4 5 @ 3
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Read more about sudoku patterns

The following website can solve sudoku
puzzles and has a lot of information about
patterns:

https://www.sudokuwiki.org

I am not a fan of these patterns, as they can
only be detected by computers

Includes the exclusive
Gordonian Rectangles method
and other advanced tricks! r—

MENSA GUIDE TO "

Solvin
Sudoku

Hundreds
of Puzzles
Plus Techniques
| to Help You
9] Crack Them All

Peter Gordon

Puzzles by Frank Longo


https://www.sudokuwiki.org/
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A last resort — intelligent guessing

- : 24 12 49
« For the more difficult sudokus, the logical steps are 5 8 7 6 3
often exhausted at some point, so we are stuck 26 26
, 713 | 4 8 1 5
« Then we could choose a number pair, and explore 36 68 49
both paths 1 5 7 2
* In the example on the right, we choose the cell (R2,C1) 12
and explore the paths starting with a 2 and a 6 in that 56 263 9 4
gel 4 7 8 9 5 1
« Convenient notation: 3 1 9 7 5 4 6 9 8
* use a pencil, write the double digit number “26" in the 8
cell 7 4 6
* Now proceed, putting double digit numbers in other 36 38 &
cells, the left digit corresponding to the choice 2 in 56 38 4 25
(R2,C1) and the right digit corresponding to the 6 2 6 5 1 4
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A last resort — intelligent guessing

« When doing this, we end of with the 5 8 y S 7 p 6 3
result displayed here 2° 9 7|3 a4 2 8 1 5
+ We observe that several cells contain 1 > 5 °? “ v 2
the same two digits; this means that this 12
number is a certainty in that cell S = 263 7 9 4
« Hence, we can rub out all double digit 4 7 8 9 3 S 1
numbers, and put a “4” in (R1,C3), @ 3 1 9 7 5 4|16 2 8
“9"in (R1,C7) and a “4" in (R3,C7) 38
7 | 4 6
« We can now proceed with simple 36 4 O R
logical steps and solve the sudoku 89 38 79
without any further problems 2 6 5 1 4
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A last resort — intelligent guessing

« All sudokus can be solved with this methodology

« Sometimes, we will encounter the same two digits

in a cell, hence we can erase all pencil entries GP 1
and put the number by pen in that cell
« Sometimes, we will not encounter any cells with / \
the same two digits; in that case, one of the GP 2 GP3
options leads to a contradiction, and we can
proceed with the other option / \ / \

- For very difficult sudokus, one may need to Fout Goed | | Fout Fout
repeat this procedure, so that we can go several
levels deep; only 1 pathis correct in the end
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World's most difficult sudoku (2012)

« Was designed by Finnish 8
mathematician Arto Inkala 3|6

« No digit can be found with logical
steps, so stuck immediately S

* There is only 1 cell with two
options, namely (R8,C7) with the
number pair “39” 1 6 8

« Sudoku turns out to be 5 levels
deep when solving with the last
resort method
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World's most difficult sudoku (2019)

« Even more difficult is this sudoku,
designed by Veit Elser from Cornell
University

* It does not even have any number
pairs, only triplets (and more)

« Last resort can start with a triplet, all 6 | 4
three options lead to number pairs,
hence we can confinue with levels
of 2 options:

* 3X2X2X....... paths
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Alternative sudokus

5| 4 8 2
7 4 6
7 4 215 6 4 5 1
8 6 5 3 9
3 8 5 2
6 |3 7 2 1 4 7 3
8 5 9 9 2 16 5
4 6|12 3 8 8
5 3 2 6 4 7 6
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Killer sudoku

« No numbers given

 The sum of numbers in a certain area is
provided
* For example, last row: clearly, the

numbers 1,2,3 should be in the first three
cells

* |In second row, numbers 1 and 2 in
positions 2 and 3 (write down number

pair)




6
4|5
S 2
7
:;,...m_an___»;@h iy - 8
*EQSEUB&‘?'
A A Diagonale buren zijn ongelijk.

e, N B R, In de grijze vakjes staan oneven cijfers.
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Serious mathematics for sudoku
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From a mathematical point of view, several
questions associated with sudoku

« How many numbers do we need to specify at least in order to produce a
correct sudoku (i.e. unique solution)<e

* Which patterns of prescribed numbers will lead to correct sudokus?

« The Japanese design sudokus by hand, and know many patterns that will lead to
unigue solutions

« Whatis the total number of distinct sudokuse

* Is there always at least 1 number pair in a uniquely solvable sudokue
* No (but the sudoku by Veit Elser is the only exception | know to date)

* In case of the “last resort” method, what is the meaning of the double digit
numbers occurring after a whilee (“Two paths coming together at some point”)
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Minimum number of clues in sudoku is 17

« This was proved by Irish mathematician Gary McGuire of UCD in 2012

* No-one ever came up with a 16 digit sudoku, so this strengthened the belief that 17 is the minimum number
of clues

- That led to the conjecture that 16-clue puzzles with unique solutions simply do not exist.

« A potential way to demonstrate that could be to check all possible completed grids for every 16-clue
puzzle, but that would take too much computing time.

+ McGuire simplified the problem by designing a 'hitting-set algorithm’:

« Search for what he calls unavoidable sets, or arrangements of numbers within the completed puzzle that are
interchangeable and so could result in multiple solutions.

+ To prevent the unavoidable sets from causing multiple solutions, the clues must overlap, or 'hit', the unavoidable sets.
+ Once the unavoidable sets are found, it is a much smaller—although still non-trivial—computing task to show that no
16-clue puzzle can hit them all.

* Having spent two years testing the algorithm, McGuire and his tfeam used about 7 million CPU hours at the
Irish Centre for High-End Computing in Dublin, searching through possible grids with the hitting-set
algorithm.
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Comments about the proof

TAK1NG A consequence of the
approach taken is that it will

SUDGOKU take some time fpr others to get
enough computing time to

SER10USL.Y check the proof, says Laura

Taalman, a mathematician also
at James Madison University,
who co-authored the book
Taking Sudoku Seriously: The
Math Behind the World’s Most
Popular Pencil Puzzle with
Rosenhouse.

JASON ROSENHOUSE AND LAURA TAALMAN




e i

Interesting consequences of the proof

« McGuire says that his approach may pay off in other ways. The hitting-set
idea that he developed for the proof has been used in papers on gene-
sequencing analysis and cellular networks, and he looks forward to seeing
if his algorithm can be usefully adapted by other researchers.

Nature doi:10.1038/nature.2012.9751



S GEELLELE

SUDOKU 17

harte nusse vom profi

Maximaler Spafl fur echte Konner

200

Ratsel

e
i S o ( Heinos 21
| Ritselbidliothek

IR

Stefan Heine in Germany
publishes magazines and
books containing sudoku
puzzles with only 17 clues
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Number of distinct sudokus

* The first known solution to complete enumeration was posted by Guenter Stertenbrink in
2003,0btaining 6,670,903,752,021,072,936,960 (6.67x10A21) distinct solutions

« “Distinct” means that at least 1 number in the puzzle is different; symmetry relations (such as
rotations) are not taken info account, they count as different

« In a 2005 study, Felgenhauer and Jarvis calculated the number of distinct sudokus by
mathematical means (group theory), ending up with the number
6,670,903,752,021,072,936,9260, confirming the value obtained by Stertenbrink

« This number is equal to 9! x 722 x 27 x 27,704,267,971, the last factor of which is prime

« NOTE: Bertram Felgenhauer is a very talented mathematician, won the IMO silver and gold
medal in 1995 resp 1996.
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Solving sudoku with Matlab

The MathWorks News&Notes

CLEVE’S CORNER

Solving Sudoku with MATLAB

By Cleve Moler

Human puzzle-solvers and computer programs use very different Sudoku-solving techniques. The fascination with solving
Sudoku by hand derives from the discovery and mastery of a myriad of subtle combinations and patterns that provide hints
about the final solution. It is not easy to program a computer to duplicate these human pattern-recognition capabilities. For
this reason, most Sudoku-solving programs take a very different approach, relying on the computer's almost limitless capacity

fo carry out bruteforce trial and error. That is the approach that | used for the MATLAB® program.

Michiel Hochstenbach created a superfast Matlab program!
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Numerical approach?

« All sudokus can be easily solved by a brute force approach; smart phones can take a
picture, and will analyse all possible solutions until the correct one is found

* | was wondering whether it is possible, for a given sudoku, to set up a number of equations,
and then solve those by numerical methods

« Clearly, we can start with 27 linear equations (for 9 rows, columns, subsquares), but it turns out
that the rank of this system of 27 equations is 21

Proof (M. Hochstenbach): taking 3 subsquares together, either in row or column direction, leads to a
sum of 3 rows/columns, which we already had. Hence, 3 equations in row direction and 3 in column
direction disappear, hence the rank is 27-2x3=21. For kA2 x kA2 sudoku, the rank is 3 kA2 - 2 k

« So non-linear equations will need to be added, and as a consequence Newton's method (or
alternatives) will have to be used

« Can lead to multiple solutions, non-convergence; additional problem: solutions need to be

integers
Any ideas? WELCOME!
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In a similar direction...... REPLIRTS {0 a
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« In 2012, on one of my travels (Sevilla), | The Chaos Within Sudoku

Méria Ercsey-Ravasz' & Zoltin Toroczkai??

SUBJECT AREAS:
"Faculty of Physics, BabesBolyai University, Str. Kogal Nr. 1, RO-400084 Clui-Napoca, Romania, Zinterdisciplinary Center
STATISTICAL PHYSICS, for Network d Appli (iCeNSA, °D of Physics, Computer Science and Engineering, University of Notre
THERMODYNAMICS AND D, Moke Dorme, IN, 44558 USA
NONLUNEAR DYNAMICS me, Note Dame, [N, -
INFORMATION THEORY AND

1] 1" COMPUTATION ‘The mathematical structure of Sudoku puzzles is akin to hard constraint satisfaction problems lying at the
ro U W W O G < O I ' l e G < ro S S e MATHEMATICS AND basis of many applications, including protein (uldmg and I.he gmum‘l«il.ale problem of glassy spin systems.
COMPUTING Via an exact mapping of Sudoku into a ical system, here we show that

PHYSICS the difficulty of Sudoku translates into transient chaotic behavior exhibited by this system. We also show

that the escape rate &, an invariant of transient chaos, provides a scalar measure of the puzzle’s hardness that
correlates well with human difficulty ratings. Accordingly, # = —log,, & can be used to define a

1 1 H Received Richter™type scale for puzzle hardness, with casy puzzles having 0 < = 1, medium ones 1 < =2, hard
pG per O n e rl g I n O n OW I ye 7 Aveo® with2 < y= 3and ultra-hard with > 3. To our best knowledge, there are no known puzzles with > 4.
gus!

ceepted

26 Seplember 2012 n Sudoku, considered as one of the world's most popular puzzles!, we haveto fill in the cells of a9 % 9 grid with
Published ntegers 1 109 such that in all rows, all columns and in nine 3 X 3 blocks every digit appearsexactly once, while
11 October 2012 respectinga setof previously given digits in someaof the cells (the so-called clues). Sudoku is an exact cover type
constraint satisfaction problem? and it is one of Karp’s 21 NP-complete problems®, when generalized to N X N
grids*. NP-complete problems are “intractable” (unless P=NP)** in the sense that all known algorithms that
ompute solutions to them do so in exponential worst-case time (in the number of variables N); in spite of the fact

Cerrespondence and that if given a candidate solution, it takes only polynomial time to check its correctness
requests for materials The intractability of NP-complete problems has important consequences, ranging from public-key cryp-

shoudbe oddressedlo  tography to statistical mechanics. In the latter case, for the ground-state problem ofIsing spin glasses (+ 1 spins),
MER fercsey.  one needs to find the lowest energy configuration among all the 2 possible spin configurations, where N is the

rovasz@phys. ubbeluj number of spins. Additionally, to describe the statistical behavior of such Ising spin models, one has to compute
) ar T ferond e pariion funciion, which isa sum over all the 2" configurations. Barahona' then straif have shown that or
Y crystallinelattices, the gr d computing the partition function are NP-complete”

Since there i littl hope in providing pu]ynumla] ume:]gurll]\ms for NP-complete prablems, the focus shifted

towards understanding the nature of the complexity forbidding fast solutions to these problems. There has been

considerable work in this direction, especially for the boolean satisfiability problem SAT (or k-SAT), which is NP-
complete for k = 3. Completeness means that all problems in NP (hence Sudoku as well), can be translated in
polynomial timeand formulatedasa k-SAT problem, as shown for the first time by Cook and Levin®, Namely, any
problem in NP can be solved via a small number of calls to a k-SAT solver and a polynomial number of steps (in
the size of the input) outside the subroutine invoking the k-SAT solver.

In k-SAT we are given N boolean variables to which we need to assign 1s or Os (TRUE or FALSE) such thata
given set of clausesin conjunctive normal form, each containing k or fewer literals (literal: a boolean variable or its
negation) are all satisfied, Le., evaluate to TRUE. Just as for the spin glass model, here we also have exponentially
many (2V) configurations or assignments to search.

In the following we treat algorithms as dynamical systems. An algorithm is a finite set of instructions acting in
some state space, applied iteratively from an initial state until an end state is reached. For example, the simplest
algorithm for the Ising model ground state problem, or the 3-SAT problem would be exhaustively testing
potentially all the 2" configurations, which quickly becomes forbidding with increasing N. To improve perform-
ance, algorithms have become more sophisticated by exploiting the structure of the problem (of the state space)
Accordingly, now 3-SA can be solved by a deterministic algorithm with an upper bound of O(1.473) steps*
Here we will only deal with deterministic algorithms that is, once an initial state is given, the “trajectory” of the
dynamical system is uniquely determined. Thus, we expect that the dynamics of those algorithms that exploit the
structure of hard problems will reflect the complexity inherent in the problem itself. Complex behavior by
deterministic dynamical systems is coined chaos in the literature®*, and thus the behavior of algorithms for
hard problems is expected to appear highly irregular or chaotic™.

SCIENTFIC REPORTS | 2:725 | DOI: 10.1038 /srep007 25 1
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» The paper presents a deterministic The Chaos Within Sudoky
Méria Ercsey-Ravasz' & Zoltin Toroczkai??
. SUBJECT AREAS:
"Faculty of Physics, BabesBolyai University, Str. Kogal Nr. 1, RO-400084 Cluj-Napoca, Remania, Znterdisciplinary Center
V | l ' ' ’ mgmgﬁfmﬁfﬁ% for Network d Appli (iCeNSA, °D of Physics, Computer Science and Engineering, University of Notre
AR DA Dame, Notre Dame, IN, 46556 USA.
INFORMATION THEORY AND
Q COMPUTATION ‘The mathematical structure of Sudoku puzzles is akin to hard constraint satisfaction problems lying at the
O n G rl ' e O r( : e O r G l ' e S S I n MATHEMATICS AND basis of many applications, including protein folding and the ground-state problem of glassy spin systems.
/’ COMPUTING Via an exact mapping of Sudoku into a inisti il i system, here we show that
PHYSICS the difficulty of Sudoku translates into transient chaotic behavior exhibited by this system. We also show
that the escape rate &; an invariant of transient chaos, provides a scalar measure of the puzzle’s hardness that
correlates well with human difficulty ratings. Accordingly, 7 = —log,, & can be used to define a
ived “Richter™-type scale for puzzle hardness, with easy puzzles having 0 < # = 1, medium ones 1 < = 2, hard
G p p ro G ‘ _ "*’f;‘mz with 2 < # = 3 and ultra-hard with 7> 3. To our best knowledge, there are no known puzzles with 4> 4.
gus!
Accepted
26 Seplember 2012 n Sudoku, considered as one of the world's most popular puzzles!, we haveto fill in the cells of a9 % 9 grid with
Published integers 1109 such that in all rows, all columns and in nine 3 X 3 blocks every digit appearsexactly once, while
oo . 11 October 2012 respecting a set of previously given digits in someof the cells (the so-called clues). Sudoku s an exact cover type
() constraint satisfaction problem® and it is one of Karp’s 21 NP-complete problems®, when generalized to N X N
grids*. NP-complete problems are “intractable” (unless P=NP)** in the sense that all known algorithms that
‘compute solutions to them do so in exponential worst-case time (in the number of variables NY; in spite of the fact
Cerrespondence and that if given a candidate solution, it takes only polynomial time to check its correctness
° ° requests for materials The intractability of NP-complete problems has important consequences, ranging from public-key cryp-
should be addressed to tography to statistical mechanics. In thelatter case, for the ground-state problem ofIsing spin glasses (* 1 spins),
or the difficulty of sudokus eekdmall gty st nechuics o el et swepelenafsns i s i)

« Paper is by Zoltan Toroczkai en Maria
Ercsey-Ravasz of Notre Dame Univ (USA
Maria is also in Cluj, Romania) -
theoretical physics department

ravasz@phys.ubbeluj
ro) or Z.T. [forof@nd.
edu)

number of spins. Additionally, to describe the statistical behavior of such Ising spin models, one has to compute
the partition function, which is a sum over all the 2 configurations. Barahona®, then Istrail have shown that for
non-planar crystalline lattices, the ground-state problem and computing the partition function are NP-complete”
Since there is little hope in providing polynomial time algorithms for NP-complete prablems, the focus shifted
towards und ding the nature of the lexity forbidding fast solutions to these problems. There has been
considerable work in this direction, especially for the boolean satisfiability problem SAT (or k-SAT), which is NP-
complete for k = 3. Completeness means that all problems in NP (hence Sudoku as well), can be translated in
polynomial timeand formulatedasa k-SAT problem, as shown for the first time by Cook and Levin®, Namely, any
problem in NP can be solved via a small number of calls to a k-SAT solver and a polynomial number of steps (in
the size of the input) outside the subroutine invoking the k-SAT solver.

In k-SAT we are given N boolean variables to which we need to assign 1s or Os (TRUE or FALSE) such thata
given set of clausesin conjunctive normal form, each containing k or fewer literals (literal: a boolean variable or its
negation) are all satisfied, Le., evaluate to TRUE. Just as for the spin glass model, here we also have exponentially
many (2V) configurations or assignments to search.

In the following we treat algorithms as dynamical systems. An algorithm is a finite set of instructions acting in
some state space, applied iteratively from an initial state until an end state is reached. For example, the simplest
algorithm for the Ising model ground state problem, or the 3-SAT problem would be exhaustively testing
potentially all the 2" configurations, which quickly becomes forbidding with increasing N. To improve perform-
ance, algorithms have become more sophisticated by exploiting the structure of the problem (of the state space)
Accordingly, now 3-SA can be solved by a deterministic algorithm with an upper bound of O(1.473) steps*
Here we will only deal with deterministic algorithms that is, once an initial state is given, the “trajectory” of the
dynamical system is uniquely determined. Thus, we expect that the dynamics of those algorithms that exploit the
structure of hard problems will reflect the complexity inherent in the problem itself. Complex behavior by
deterministic dynamical systems is coined chaos in the literature®™, and thus the behavior of algorithms for
hard problems is expected to appear highly irregular or chaotic™.

SCIENTIFIC REPORTS | 2:725 | DOI: 10.1038 /srep007 25 1
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About the paper

* They start with a discussion on the so-called Boolean satisfiability problem,
also fermed SAT

« Determining if there exists an interpretation that satisfies a given Boolean
formula.

* In other words, it asks whether the variables of a given Boolean formula can be
consistently replaced by the values TRUE or FALSE in such a way that the
formula evaluates to TRUE.

« SAT was the first problem that was proved to be NP-complete (Cool-Levin)

* The sudoku problem is then transformed into a so-called k-SAT problem,
which is a special kind of SAT (and: k-SAT is NP-complete for k >= 3)
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How it works

« Transform the sudoku into a 3-d structure where, in the n-th layer, a 1 is put in
the position where the number n was given in the sudoku; 0 otherwise

(a) (b) - K6)s S0
1|2| |3 a : o8 0/o/oJo/o ofojo|1
3|5 & f(‘:? 0 : 00/oJo,  Jololo
4 5 s 0,0 1jolo0folo 0
| |s]4] 2 i[|® 4 0,0/ 0|1/00fo/0/0
6 7| g ; 0]ojo o0 0
8| 9 > 0000 0

M A

(311 | 18] | = | [010] [0
+ ’ .9 .7. / / / 4 .o o. .0
6 8 0o 0

» This makes it easier to check the rules of a sudoku, as every layer should satisfy
the same rules; in addition, rules for interaction between layers are needed
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K-SAT and dynamical systems

* In 2011, the authors provided a deterministic continuous-time solver for the Boolean k-SAT @
problem using coupled ordinary differential equations with a one-to-one
correspondence between the k-SAT solution clusters and the attractors of the
corresponding system of ODEs.

CASA heart
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K-SAT and dynamical systems

* In 2011, the authors provided a deterministic continuous-time solver for the Boolean k-SAT
problem using coupled ordinary differential equations with a one-to-one
correspondence between the k-SAT solution clusters and the attractors of the
corresponding system of ODEs.

» This confinuous-time dynamical system is in a form naturally suited for chaos theory
methods, and thus it allows studying the relationship between optimization hardness and
chaotic behavior.

* In the paper the focus is only on solvable (satisfiable) instances, and thus the observed
chaotic behavior will necessarily be transient; hence, the sudoku will be solved with a time-
dependent solver!

» Sudoku hardness is then defined according to the complexity of solving the system of ODEs

| will skip further details; if you are interested, you can get a copy of the paper
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The solution of a simple sudoku

ola|7]83|5[2]6]1
6|2(3|7]a[1]8]5]09
5/s/1|6|0|2|3|7]a
819|456 (3|1|2|7
1|5/6|2|7/8|9|4a|3
3l7l2|9]1/al5|8]6
413|5[1]2]|6]|7|9]8
7] 6|al3|[5/9]a]1]2
2(1|9|4ls|7]|6|3]5
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The solution of a difficult sudoku

N (=2 (N O o]Jon || W
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Graph coloring problems and sudoku

- Let G(V,E) be a graph with vertices (V) connected by edges (E).

« A proper m-coloring of G is a mapping c: V - K={1,....m}, assigning one of the
m possible colors to each vertex, such that no two adjacent vertices share the
same color, i.e. c(i) =/ c(j) forallij, inE

* The graph coloring problem consists in determining whether it is possible to find
a proper m-coloring of the graph G

« The graph coloring problem is NP-complete, hence approximate methods are
needed to solve it

« Solution: Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by
semidefinite programming. J. ACM (JACM) 45(2), 246-265 (1998) (KMS
method)
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Douglas-Rachford splitting algorithm

« The Douglas—Rachford algorithm is a classical optimization method (originally a
numerical method using finite differences) that has found many applications

« J. Douglas, H.H. Rachford, “On the numerical solution of heat conduction problems in
two and three space variables”, Trans. Amer. Math. Soc., 82 (1956), pp. 421-439

« Veit Elser (Cornell) suggested (2012) to use the DR algorithm to iteratively find
solutions to the semidefinite programming task representing the graph colouring
problem

« Francisco J. Aragon Artacho, Rubén Campoy and Veit Elser (2019) proposed
several alternative versions of the DR method, and used these to attack sudokus

* Again no details, people interested can ask me for the paper(s)
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Experimental results of DR on ‘nasty’ sudoku

Cubic Binary Rank
Time Inst. | Cumul. Inst. | Cumul. Inst. | Cumul.
0-24 12 12% 15 15% 61 61%
25-49 0 12% 2 17% 36 97%
50-99 0 12% 1 18% 3 100%
100-299 0 12% 1 19% 0 100%
Unsolved 81 8% 81 1% 0 0%

Fig. 12 Number of solved instances (right), among 100 random starting points, to find the solution of the
‘nasty’ Sudoku (left) by DR with the cubic, binary, and rank formulations. For each interval of time (in s), we
show the number of solved instances and the cummulative proportion of solved instances for each formulation.
The algorithm was stopped after a maximum of 5 min, in which case the problem was labeled as ‘“Unsolved”
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Conclusion



T T T T T T LTI T LTI T T A Z 517 1

Conclusion e

« Sudoku is not only fun, but also the subject of quite a few very interesting mathematical works

« Basic questions, such as the total number of distinct sudokus, or the minimal number of clues to be
prescribed, have been solved

* More advanced questions, such as “which structures allow uniquely solvable sudokus” or “what is
the meaning of ending up with the same number in a certain cell when following two distinct
paths” are yet unanswered

« Deterministic ways of solving sudoku have been developed, by relating sudoku to graph colouring
or Boolean satfisfiability

* The question still stands whether we can find other deterministic ways, based upon sets of linear
and nonlinear equations solved with numerical methods

* Typing “sudoku mathematics” in on google, many more interesting mathematical work on sudoku is
found

« (Nearly) Final note: | discussed with Hans Zantema whether we could have an “NWO Klein" on
sudoku
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Commercial message
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